第五百七十二章 暗中积累(2/3)

在外太空的亚真空环境下,航天器的散热问题,成为一个难题。

之前雄鹰航天和航天科工的散热方案,是采用激光推进器,一边消耗多余的热量,一边作为动力,可以一举两得。

这套方案最典型的应用项目,就是星盘通信系统,运行在近地轨道公里之间的星盘危险,将这个方案用得炉火纯青。

但是这种激光辐射散热方案,也不能将卫星内部的热量,百分百散发出去。

特别是电路、芯片中释放出来废热,虽然可以通过温差发电模块,回收一部分,但仍然有一部分残留。

因此航天器内部,都配备了一个氢海绵吸热罐,可以用氢海绵中的氢吸热,然后将高温氢气送入激光推进器中,作为推进器工质使用。

这个方案麻烦的地方,就是要定期更换氢海绵罐。

幸好现在大中华区在航天领域,已经可以做到近地轨道38万吨年,同步轨道万吨年,月球轨道万吨年。

这个年有效载荷,在当前的航天发展中,已经处于高度领先的地位,有相对充沛的有效载荷,定期更换航天器的一些耗材,也是可以选择的。

但现在有了常温超导体,航天器的散热问题,将变得越来越小,而且可以提高航天器的电利用率。

要知道,当前的电能综合利用率,已经被人类开发的极致,接下来别说1的提升了,就算是的提升,都困难重重。

而常温超导体的实用化,可以将系统的综合电能利用率,提升815,这是一个非常巨大的进步,一个不亚于可控核聚变的技术。

可控核聚变让人类获得充沛的能源,而常温超导体,则让人类的电能利用率,提升到极致。

在黄修远看了,人类不仅仅要获得更多的电能,也要充分高效的利用电能。

如果本土的输电线路,都改造成为常温超导体,就算是当前的发电量不变,也会多出万亿千瓦时的电能。

更何况整个大中华区内,随着各大电网通力合作,将一部分落后地区的小电网整合后,整体年发电量已经达到了万亿千瓦时。

半天的电能无效损耗平均在11左右,但东南亚地区的电能无效损耗,却平均在左右。

其他的东北亚、大洋洲,也有712的无效损耗。

电网的无效损耗,不仅仅浪费能量,也加大了电力系统的综合成本。

本章未完,点击下一页继续阅读。